Shri. Shamrao Patil (Yadravkar) Educational & Charitable Trust's Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji)-416121, Dist. – Kolhapur (An Autonomous Institute) (Approved by AICTE, New Delhi, Recognized by Government of Maharashtra & Affiliated to BATU University, Lonere) NBA Accredited Programs, Accredited By NAAC 'A' Grade, ISO 9001:2015 Certified # Syllabus Structure of M.Tech. (Mechatronics) ## Department of Mechatronics Engineering Semester: I & II Dept. of Mechatronics Engineering SIT COE, Yadrav Page 1 of 6 ## Shri. Shamrao Patil (Yadravkar) Educational & Charitable Trust's Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Department: Department of Mechatronics Engineering Rev: Course Structure/NEP/01/2024-25 Class: F.Y. M.Tech. Semester: I | | Course | T AUGUSTO | Т | eachi | ng S | cheme | | Evalu | ation Sc | heme | | | |-------------|--------|---|----|-------|------|-----------|------|-------|----------|------|-------|--------| | Course Code | Type | Course | E | T | P | Total Hrs | CA-I | CA-II | MSE | ESE | Total | Credit | | 24MMT1101 | ELC | Research Methodology
& IPR | 3 | - | | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1102 | PCC | Fluid Power system and
Factory Automation | 3 | 8 | | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1103 | PCC | Mechatronics System
Design | 3 | | (e) | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1104 | PCC | Computer Control of
Flexible Manufacturing
Systems | 3 | 30 | 1977 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1105 | PCC | Bridge Course Principles of Mechanical Design /Fundamental of Electronics | 2 | | +: | 2 | 25 | 25 | ** | - | 50 | Audit | | 24MMT1106 | PEC | Elective – I | 3 | * | | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1107 | PCC | Fluid Power system and
Factory Automation
Laboratory | * | 3 | 2 | 2 | 15 | 15 | | 20 | 50 | 1 | | 24MMT1108 | PCC | Mechatronics System
Design Laboratory | • | 3 | 2 | 2 | 15 | 15 | | 20 | 50 | 1 | | 24MMT1109 | AEC | Effective Communication
Skills | ·6 | 2 | 2 | 2 | 25 | 25 | ** | | 50 | 1 | | | | | 17 | 0 | 6 | 23 | 130 | 130 | 150 | 290 | 700 | 18 | ## Elective-I: One subject to be chosen from the following subjects. | Code | Course | | |------------|---|--| | 24MMT1106A | Signal Conditioning and Data Acquisition System | | | 24MMT1106B | Advanced Control System | | | 24MMT1106C | Advanced Computer Programming | | | 24MMT1106D | Digital Signal Processing and Machine Vision | | Dept. of Mechatronics Engineering Page 2 of 6 ## Shri. Shamrao Patil (Yadravkar) Educational & Charitable Trust's Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Department: Department of Mechatronics Engineering Rev: Course Structure /NEP/01/2024-25 Class: F.Y. M.Tech. Semester: II | | Course | V2241-0400-00 | 7 | Ceachi | ig Sch | eme | 1 | Evalu | ation S | cheme | | 100 | |-------------|--------|---|-----|--------|--------|--------------|------|-------|---------|-------|-------|---------| | Course Code | Type | Course | L | Т | p | Total
Hrs | CA-I | CA-II | MSE | ESE | Total | Credits | | 24MMT1201 | PCC | Robot Dynamics
and Control | 3 | 0 | 0 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1202 | | Advanced
Microcontrollers
and
Embedded System | 3 | 0 | 0 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1203 | PCC | Industrial Automation | 3 | 0 | 0 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1204 | ESC | Experimental Design,
Data Analysis and
QualityControl | 3 | 0 | 0 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1205 | PEC | Elective – II | 3 | 0 | 0 | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT1206 | HSSM | Industrial Management | 1 | | - | 1 | 25 | 25 | | | 50 | Audit | | 24MMT1207 | PCC | Advanced
Microcontrollers
and Embedded
System Laboratory | 125 | | 2 | 2 | 25 | 25 | - | - | 50 | 1 | | 24MMT1208 | VSEC | Power Electronics
and Drives
laboratory | | | 2 | 2 | 15 | 15 | | 20 | 50 | 31 | | 24MMT1209 | AEC | Presentation skills | - 1 | (*) | 2 | 2 | 15 | 15 | 244 | 20 | 50 | 1 | | | | | 16 | 0 | 6 | 22 | 130 | 10 | 150 | 290 | 700 | 18 | ## Elective - II: One subject to be chosen from the following subjects. | Code | Course | |------------|------------------------------------| | 24MMT1205A | Product Design and Development | | 24MMT1205B | Computer Integrated Manufacturing | | 24MMT1205C | Micro Electro-Mechanical Systems | | 24MMT1205D | Autotronics & Vehicle Intelligence | VARONISTITUTE OF USE SHIPPING TO Plead Dept. of Mechatronics Engineering SIT COE, Yadrav Page 3 of 6 ## Sharad Institute of Technology, College of Engineering Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur (An Autonomous Institute) (Approved by AICTE, New Delhi, Recognized by Government of Maharashtra & Affiliated to BATU University, Lonere) NBA Accredited Programs, Accredited By NAAC 'A' Grade, ISO 9001:2015 Certified # Syllabus Structure of M. Tech. (Mechatronics) ## Department of Mechatronics Engineering Semester: III & IV Dept. of Machatronics Engineering Page 4 of 6 ## ShriShamraoPatil (Yadravkar) Educational & Charitable Trust's Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Department: Department of Mechatronics Engineering Rev: Course Structure/00/2024-25 Class: S.Y. M.Tech Semester: III | | Type of | | Te | achin | g Sc | heme | Evalu | Credits | | | | | |-------------|---------|-------------------------|----|-------|------|--------------|-------|---------|-----|-----|-------|----| | Course Code | Course | Course | L | т | p | Total
Hrs | CA-I | CA-II | MSE | ESE | Total | | | 24MMT2301 | MDM | Self-Learning Course-I | 23 | 2 | | 3 | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT2302 | IKS | Self-Learning Course-II | | * | 9 | :=: | 10 | 10 | 30 | 50 | 100 | 3 | | 24MMT2303 | ELC | Dissertation (Part-I) | - | | | 3.43 | 25 | 25 | | 50 | 100 | 12 | | | | | * | * | | | 45 | 45 | 60 | 150 | 300 | 18 | #### Self-Learning Course-I- Multidisciplinary Minor 24MMT2101A: Project Management: Planning, Execution, Evaluation and Control 24MMT2101B: Robotics 24MMT2101C: Computer Networks and Internet Protocol #### Self-Learning Course-II- IKS 24MMT2102A: Indian Knowledge System (IKS): Conceptsand Applications in Engineering 24MMT2102B: Indian Knowledge System (IKS): Humanities and Social Sciences 24MMT2102C: Ancient Indian Management Head Dept. of Mechatronics Engineering SIT COE Yadray Page 5 of 6 ## Shri. Shamrao Patil (Yadravkar) Educational & Charitable Trust's Sharad Institute of Technology College of Engineering Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Department: Department of Mechatronics Engineering Rev: Course Structure/00/2024-25 Class: S.Y. M.Tech. Semester: IV | Course Code | Course | | Teaching Scheme Evaluation Scheme | | | | | | Credits | | | | |-------------|--------|---------------------------|-----------------------------------|---|---|---------------|------|-------|---------|-----|-------|----| | Course Cour | Туре | Course | L | Т | P | Total
Hrs. | CA-I | CA-II | MSE | ESE | Total | | | 24MMT2401 | ELC | Dissertation
(Part-II) | (®) | 3 | | | 25 | 25 | 3.00 | 100 | 150 | 18 | | | | Total | | | | | 25 | 25 | 1.50 | 100 | 150 | 18 | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 6 of 6 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | 110000000000000000000000000000000000000 | | | | | |---|------|--------|-------|---| | Research | Meth | odolog | v& IP | R | | 24MMT1101 | ELC | Research Methodology& IPR | 3-0-0 | 3 Credits | |-----------|-----|---------------------------|-------|-----------| | Teaching Scheme | Examination Scheme | | |---------------------|---|--| | Lecture: 3 hrs/week | CA-I:10 Marks CA -II:10 Marks Mid Semester Exam: 30 Marks End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Define research, explain and apply research terms, describe the research process and the principal activities, skills and ethics associated with the research process. | |-----|--| | CO2 | Explain the relationship between theory and research. | | CO3 | Describe and compare the major quantitative and qualitative research method. | | CO4 | Propose a research study and justify the theory as well as methodological decisions including sampling and measurement. | | CO5 | Summarize the importance of research ethics and integrate it into researchprocess. | | CO6 | Construct an effective research proposal that will serve as the launching point for the further study. | #### Course Contents | Unit 1: Research methodology an Introduction Meaning, objectives and motivation of research, Types of research, research approaches, significance of research, and research methods vs. Methodology, research and scientific methods, Research process, Criteria of good research. | [6] | |---|-----| | Unit 2 Defining the research problem and research design Selecting the problem, Techniques involved in defining the problem, meaning and need of research design, features of good design, important concepts relating to
research design, different research designs, Basic concepts of experimental designs | [6] | | Unit 3 Sampling design Census and sample survey, Implications of sample design, Steps in sampling design, Criteria of selecting sampling procedure, Characteristics of good sample design, Different types of sample designs, Random sample from an infinite universe, Complex random sampling designs | [6] | | Unit 4 Measurement and scaling techniques: Measurement in research, measurement scales, Sources of error in measurement, Tests of sound measurement, Technique of developing measurement Tools, scaling, meaning of | [6] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 7 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | scaling, sale classification bases, Important scaling Techniques, scale construction
Techniques | | |---|-----| | Unit 5 Sampling fundamentals: Need of sampling, Important sampling distribution, central limit theorem, sampling theory, Sandler's A-Test, Concept of standard error, Estimation, Estimating the population mean , Estimating Population Proportion, Sample Size and its Determination, Determination of Sample Size through the Approach Based on Precision Rate and Confidence Level, Determination of Sample Size through the Approach Based on Bayesian Statistics | [7] | | Unit 6 Interpretation and report writing: Meaning of interpretation, Why Interpretation. Techniques of interpretation, Precaution in interpretation, Significance of report writing, Different steps in writing report, Layout of research report, Types of reports, Oral presentation, Mechanism of writing research report, Precaution for writing research reports | [6] | - C. R. Kothari, Research Methodology: Methods and Techniques New Age International, 2013. - Deepak Chawla Neena Sondhi, —Research Methodology concepts and cases Vikas, New Delhi, 2011. #### Reference Books: - 1. Panneerselvam R, "Research Methodology", PHI, New Delhi, 2013. - 2. Taylor, Bill, "Research Methodology", PHI, New Delhi, 2006. Dept. of Mechatronics Engineering SIT COE, Yadray Page 8 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Fluid Power system and Factory Automation | 24MMT1102 | PCC | Fluid Power system and Factory
Automation | 3-0-0 | 3 Credits | |-----------|-----|--|-------|-----------| |-----------|-----|--|-------|-----------| | Teaching Scheme | Examination Scheme | | |--------------------|-----------------------------|--| | ecture: 3 hrs/week | CA -I :10 Marks | | | | CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | ## Pre-Requisites: Course Outcomes: At the end of the course, students will be able to: | CO1 | Explain the importance and the scope of hydraulics and pneumatics in the modernindustry. | |-----|--| | CO2 | Select and size the different components required to design a fluid power system. | | CO3 | Select a control system to control the operation of designed fluid power system. | | CO4 | Design and implement low-cost automation system. | | CO5 | Design a pneumatic equipment by selecting proper components | | CO6 | Explain use of PLC in sequencing operation for automation | #### Course Contents: | Unit 1: Hydraulic System | [6] | |---|-----| | Hydraulic Power Generators - Selection and specification of pumps, pump characteristics. | | | Unit 2: Actuators Linear and Rotary Actuators - selection, specification and characteristics. Pressure relief valves, direction and flow control valves, non-return and safety valves, actuation systems | [6] | | Unit 3: Hydraulic Circuits Reciprocation, quick return, sequencing, synchronizing circuits, accumulator circuits, industrial circuits, press circuits, hydraulic milling machine, grinding, planning, copying, forklift, earth mover circuits, design and selection of components - safety and emergency mandrels. | [6] | | Unit 4: Pneumatic System Pneumatic fundamentals, control elements, position and pressure sensing. Pneumatic logic circuits - switching circuits, fringe conditions modules and these integration, sequential | [6] | Head Dept. of Mechatronics Engineering SIT COE, Yadray Page 9 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadray (Ichalkaranji)-416121, Dist. - Kolhapur | circuits, cascade methods, mapping methods, step counter method - compound circuit design, combination circuit design. | | |--|-----| | Unit 5: Pneumatic Circuits Pneumatic equipment - selection of components, design calculations, application, fault finding, hydro pneumatic circuits | [7] | | Unit 6: various Controllers in industry Use of microprocessors/microcontrollers for sequencing - PLC, Low-cost automation - Robotic circuits. | [6] | #### Text Books: - Anthon H. Hehn, "Fluid Power Troubleshooting", 2nd Edition, Marcel Dekker. - S. R. Majumdar, "Pneumatic Systems: Principles and Maintenance", Tata McGraw Hill Publishing Company Limited, 1999 #### Reference Books: - 1. Antony Esposito, "Fluid power with Applications", Prentice Hall India, 7th Edition, 2014. - 2. Dudleyt, A. Pease and John J.Pippenger, "Basic Fluid Power", Prentice Hall, 1987. - 3. Andrew Parr, "Hydraulic and Pneumatics", Jaico Publishing House, 1999. - 4. Bolton, W. "Pneumatic and Hydraulic Systems", Butterworth Heinemann, 1997. Page 10 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Mechatronics System Design | | | | | | |----------------------------|-----|----------------------------|-------|----------|--| | 24MMT1103 | PCC | Mechatronics System Design | 3-0-0 | 3Credits | | | Teaching Scheme | Examination Scheme | | |-------------------|--|--| | Lecture:3hrs/week | CA -I:10Marks
CA-II:10Marks
Mid Semester Exam: 30 Marks
End Semester Exam:50Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Explain the importance and the scope of rotational drives | |-----|--| | CO2 | Select and size the different components required to design a mechanical system. | | CO3 | Illustrate the real time interfacing | | CO4 | Explain the components of a data acquisition system | | CO5 | Design a data acquisition system | | CO6 | Design a Mechatronics system | #### Course Contents: | Unit 1:Rotational drives Pneumatic Motors: continuous and limited rotation-Hydraulic Motors: continuous and limited rotation-Brushless DC Motors-Motion convertors, Fixed ratio, invariant motion profile, variators, remotely controlled couplings Hydraulic Circuits and Pneumatic Circuits | [6] | |--|-----| |--|-----| -De Page 11 of 57 SIT COE, Yadray ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 2: Mechanical Systems and Design | A 90% | |---|-------| | Mechatronics approach-Control program control, adaptive control and distributed systems -
Design process - Types of Design - Integrated product design - Mechanisms, load conditions,
design and flexibility Structures, load conditions, flexibility and environmental isolation—
Man machine interface, industrial design and ergonomics, information transfer from
machine from machine to man and man to machine, safety. | [6] | | Unit 3: Real time interfacing Introduction Elements of data acquisition and control Overview of I/O Process-Installation of I/O card and software - Installation of application software- Over framing. | [8] | | Unit 4: Case studies on Data Acquisition Transducer calibration system for Automotive
applications Strain Gauge weighing system – Solenoid force –Displacement calibration system - Rotary optical encoder - Inverted cendulum control - Controlling temperature of a hot/cold reservoir – Pick and place robot – Car park barriers | [6] | | Unit 5: Case studies on Data Acquisition and Control [Thermal cycle fatigue of a ceramic plate-pH control system-De-Icing Temperature Control System-Skip control of a CD Player-Autofocus Camera, exposure control | [6] | | Unit 6: Case studies on design of Mechatronics products Motion control using D.C. Motor, A.C. Motor & Solenoids - Car engine management - Barcode reader | [6] | - 2. Devdas Shetty, Richard A. Kolk, Mechatronics System Design, PWS Publishing company,1997 #### Reference Books: - 1. Bradley, D. Dawson, N.C. Burd and A.J. Loader, Mechatronics: Electronics in Products And rocesses, Chapmanand Hall, London, 1991. - 2. Brian Morris, Automated Manufacturing Systems-Actuators, Controls, Sensors and Robotics, McGraw Hill International Edition, 1995 Dept. of Mechatronics Engineering SIT COE, Yadrav Page 12 of 57 ## **Sharad Institute of Technology College of Engineering** (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Computer Control of Flexible Manufacturing Systems | | | | | | |--|-----|---|-------|-----------|--| | 24MMT1104 | PCC | Computer Control of Flexible
Manufacturing Systems | 3-0-0 | 3 Credits | | | Teaching Scheme | Examination Scheme | | |---------------------|---|--| | Lecture: 2 hrs/week | CA –I :10 Marks
CA –II :10 Marks
Mid Semester Exam: 30 Marks
End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Explain the importance of Manufacturing Systems | |-----|---| | CO2 | Explain the role of automation in manufacturing | | CO3 | Implement FMS concept in a manufacturing environment | | CO4 | Differentiate between Group Technology and Cellular Manufacturing | | CO5 | Explain Different Quality programs in Manufacturing | | CO6 | Implement use of FMS concept in Process Planning | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 13 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Course Contents: | Unit- 1 Introduction to Manufacturing Systems | [3] | |--|-----| | Components, Classification Scheme, Single Station Automated Cells, Applications of Single | [5] | | Station Automated Cells, Fundamentals of Manual Assembly Lines, Analysis of Manual | | | Assembly Lines, Line Balancing Algorithms, Considerations in Assembly Line Design | | | Unit- 2 Automated Production Lines | [5] | | Fundamentals, Applications, Analysis of Transfer Lines, Fundamentals of Automated | [-1 | | Assembly Lines, Cellular Manufacturing Part Classifications and Coding, Applications of | | | Group Technology, Quantitive analysis of Cellular Manufacturing. | | | Unit- 3 Flexible Manufacturing Systems | [4] | | Introduction, Components of FMS, Applications, Benefits, FMS planning and | [4] | | Implementation issues, Quantitive Analysis of FMS. Fundamentals of NC Technology, | | | Computer Numerical Control, Distributed Numerical Control, Applications of NC, and NC | | | part programming. Sample NC programs including step, groove, taper, and profile turning. | | | Unit- 4 Group Technology | [5] | | Group Technology: Part families, part classification and coding. Types of classification and | [5] | | coding system, Machine cell design: The composite part concept, types of cell design. | | | Determining the best machine arrangement, benefits of group technology | | | Just In Time and Lean Production: Lean Production and Waste in Manufacturing, just in | | | time production system, | | | | | | Quality Programs in Manufacturing: Process Variability and Process capability, Statistical | | | Process Control, Six Sigma, Taguchi Methods in Quality Engineering, ISO 9000. Coordinate | | | Measuring Machine, Machine Vision, Non-contact, Non-Optical Inspection Techniques | | | Unit- 5 Automated Material Handling | [4] | | Function - types - analysis of material handling equipment's. Design of AGV systems. | 124 | | Automated storage: Storage system performance – AS/RS – carousel storage system – WIP | | | storage – interfacing handling storage with manufacturing, Analysis of AS/RS, Industrial | | | robots. Tool Management system-tool strategies-tool identification technologies and tool | | | monitoring, Inspection stations-CMM and non-contact inspection | | | monitoring, inspection stations-civilyt and non-contact inspection | | | Unit- 6 Networking concepts | [3] | | LOSI, MAP, TOP, LAN, WAN, Communication interface, bus architecture, topologies, | | | protocols. Manufacturing data base-Process planning, CAPP, ERP modules. Development | | | and implementation of FMS: Planning phases, scheduling - integration - system. | | | configuration - simulation - FMS project development steps hardware and software | | | development. Installation and implementation. Application and benefits of FMS, Quantitative | | | analysis of FMS. | | | | | | | | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 14 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - 1. Jha, N.K. "Handbook of flexible manufacturing systems", Academic Press Inc., 1991 - Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recent development", Elsevier Science, 1995. - 3. Reza A Maleki "Flexible Manufacturing system" Prentice Hall of Inc New Jersey, 1991 #### Reference Books: - Mikell P. Groover; "Automation, Production Systems, and Computer Integrated Manufacturing"; Prentice Hall Publishing New Delhi; ISBN 978-81-203-3418-2 - Handbook of Cellular Manufacturing Systems; Editor: Shhrukh A. Rani; Publisher: Wiley Inter science; ISBN#:0-471-12139-8. - 3. CAD / CAM / CIM by P. Radhakrishnan, S. Subramanyan, New Age International. - 4. Computer Aided Manufacture by Chien Chang and Richard A Wysk, Prentice HALL Dept. of Mechatronics Engineering SIT COE, Yadrav Page 15 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Bridge Course: Principles of Mechanical Design | | | ge course i i incipies di l'accuminent i | NATIONAL DESCRIPTION OF THE PROPERTY PR | 243 (270) | |-----------|-----|--|--|-----------| | 24MMT1105 | PCC | Principles of Mechanical Design | 2-0-0 | Audit | | Teaching Scheme | Examination Scheme | | |---------------------|-------------------------------------|--| | Lecture: 2 hrs/week | CA –I :25 Marks
CA –II :25 Marks | | | | | | Pre-Requisites: Nil Course Outcomes: At the end of the course, the student will be able to: | CO1 | Design simple machine parts and components. | | |-----|---|--| | CO2 | Design basic procedure for the selection of machine components. | | | CO3 | Design various joints, gears brakes, dynamometer etc. | | | CO4 | Selection of Rolling Contact Bearings | | #### Course Contents: | Unit 1: Simple stresses and strains: | |
--|-----| | Concept of stress and strain (linear, lateral, shear and volumetric), Hook's law. Elastic constants and their relationship. Generalized Hook's law. Axial force diagram, stresses, strains and deformation in determinate and indeterminate homogeneous and composite bars under concentrated loads, self-weight and temperature changes. | [5] | | Unit 2: Shear force and bending moment diagrams: Concept and definition of shear force and bending moment in beams due to concentrated load, UDL, uniformly varying loads and couples' indeterminate beams | [4] | | Unit 3: Loads and stress in machine elements static, shock, impact and fluctuating loads, types of stresses, tensile, compressive, direct and torsional shear, bending stresses, combined effect of direct, bending and torsional stresses, Design of shaft sed on torsional and lateral rigidity, combined loadings. Design of keys, keyways and splines. Standard threads, stresses in threads, preloaded fasteners in tension, joints stiffness factor, gasket joints, controlling preload, fasteners in shear, power screws. | [3] | | Unit 4 Design of springs Spring configurations, materials, design of helical compression extension torsion springs. Design of composite springs (in parallel, series, concentric). Design of Belleville Spring, washers. Design of leaf springs | [4] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 16 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 5 Friction Clutches, Brakes and Dynamometer Pivot collar friction, types of friction clutches, design consideration plate, cone & centrifugal clutches. Types like band brake, shoe brake, band & block brake, Disc Brakes, absorption & transmission type dynamometers. Design consideration of various brakes. | [4] | |--|-----| | Unit 6 Rolling Contact Bearings Types, Static and Dynamic load capacity, Strobeck's Equation, Concept of equivalent load, Load life Relationship, Selection of bearing from Manufacturer's Catalogue, Design for variable loads and Speeds, Bearings with Probability of Survival other than 90%, Lubrication and Mounting of bearing. | [4] | #### Text Books: - Ramamrutham S.: Strength of Materials, Dhanpat Rai & Sons, 1991. - V.B. Bhandari, "Design of Machine Elements", Tata McGraw Hill Publishing CompanyLtd., 2nd Edition, 2007 - 3. Beer and Johnston: Strength of Materials-CSB Publisher. #### Reference Books: - Rao, J. S.& Dukkipati, R.V.: Mechanism & Machine Theory, New Age International Pvt. Ltd. Publishers. - 2. Ramamurthy, V.: Mechanics of Machines, Narosa Publishing House. - 3. Manufacturing Technology, P.N.Rao, Tata McGraw-Hill Publishing Limited ,II Edition, 2002. - S.S. Rattan, "Theory of Machines", TataMcGrawHillPublishingCompanyLtd.,2nd Edition, 2007 OF MECANICA CHIEFE OF MECANGER Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 17 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Bridge Course: Fundamental of Electronics | | DII | age Course. Fundamental of Electr | l | | |-----------|-----|-----------------------------------|-------|-------| | 24MMT1105 | PCC | Fundamental of Electronics | 2-0-0 | Audit | | Examination Scheme | | |--------------------|-----------------| | CA -I :25 Marks | | | CA -II :25 Marks | | | | CA -I :25 Marks | Pre-Requisites: C Programming Course Outcomes: At the end of the course, students will be able to: | Explain the language of electronics, elements and their functionality. | | |--|---| | Illustrate Application of Electronic System Instrumentation system | | | Illustrate Analog and Digital systems and their applications. | | | Explain Power Circuits and Systems | | | Explain Control Systems | | | | Illustrate Application of Electronic System Instrumentation system Illustrate Analog and Digital systems and their applications. Explain Power Circuits and Systems | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 18 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Course Contents: | Unit 1: Role of various Engineering disciplines in Mechatronics Mechatronics Design elements, Scope and Applications of Mechatronics, Analog electronic components and devices, oscillators as signal generators, Power supplies and voltage regulators, Power Electronics- Devices | [5] | |---|-----| | Unit 2: Industrial electronic circuits Digital Electronics – Arithmetic circuits, Multiplexers/Demultiplexers, Registers, Counters, Memories, few examples of transducers, Signal conditioning Circuits using Operational amplifiers, Noise Problems | [3] | | Unit 3 Application of Electronic System Instrumentation system: Transducer, Strain Gauge, DMM, Oscilloscope Regulated power supply Remote control, Character Display, Clock, Counter, Measurements, Data Logging, Audio-Video system | [4] | | Unit 4 Operation Amplifier (Op-amps) Ideal Op-amp, Differential amplifier: differential and common mode operation common mode rejection ratio (CMRR), Practical op-amp circuits: inverting amplifier, non -inverting amplifier, weighted summer, integrator, differentiator, large signal operation of op-amps, other applications of op-amps: instrumentation circuits, active filters, controlled sources, logarithmic amplifiers, waveform generators, Schmitt triggers, comparators | [4] | | Unit 5 Power Circuits and Systems Class A large signal amplifiers, second-harmonic distortion, Transformer coupled audio power amplifier, Class B amplifier, Class AB operation, Power BJTs, Regulated power supplies, Series voltage regulator, four-layer diodes: p-n-p-n characteristics, Silicon controlled rectifier | [4] | | Unit 6 Control Systems Components, Classification of Control Systems, Transfer functions,
Time and Frequency response Analysis tools | [4] | #### Text Books: - Allen Motter shed, "Electronic Devices and Circuits", Prentice Hall International, Third Edition - M.D.Singh and J.G.Joshi, "Mechatronics-Principles and Applications", Prentice Hall India publication-EEE. Robert Boy lestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" PHI; 8th Edition.200 #### Reference Books: - 1. Thomas L. Floyd, "Electronic Devices" 8th Edition, Pearson Education, Inc., 2007 - A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 6th Edition, Oxford University Press, 2006 Head Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 19 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Signal Conditioning and Data Acquisition System | | | | | | |---|---|-------|-----------|--|--| | 24MMT1106A PEC | Signal Conditioning and Data Acquisition System | 3-0-0 | 3 Credits | | | | Teaching Scheme: | Examination Scheme: | | |-----------------------|-----------------------------|--| | Lecture: -3 hrs./week | CA -I :10 Marks | | | | CA -II:10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Explain the Analog Signal Conditioning principles and circuits. | | |-----|---|--| | CO2 | Interpret OP-AMP circuits used in instrumentation | | | CO3 | Illustrate various types of Digitals to Analog converters. | | | CO4 | Explain Analog to Digital converters. | | | CO5 | Elaborate the Data Acquisition System. | | | CO6 | Discuss applications and benefits of Data Acquisition System. | | ## Course Contents: | Unit 1: Analog Signal Conditioning Introduction, Principles of Analog Signal Conditioning, Signal-Level Changing, linearization, Conversions, Zero adjustment, Span adjustment, Filtering and Impedance Matching, Passive Circuits, Divider Circuit, Bridge Circuits, RC Filters | [6] | |--|-----| | Unit 2: Operational Amplifiers Characteristics, Op Amp Circuits in
Instrumentation, Voltage Follower, Differential Amplifier, Instrumentation Amplifier, Active Filters, Voltage-to-Current Converter, Current-to-Voltage Converter, Linearization, Special Integrated Circuits (ICs). | [7] | | Unit 3 : Digital-to-Analog Converters DACs Review of Digital Fundamentals, Busses and Tri-State Buffers, Converters, Comparators, Digital-to-Analog Converters (DAC), Serial, parallel, direct and indirect DACs. Hybrid and monolithic DACs. Interfacing of DACs to microprocessors and PCs | [8] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 20 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) | Yadray | (Ichalkaranji)-4 | 16121, Di | st Kolhapur | |--------|------------------|-----------|-------------| |--------|------------------|-----------|-------------| | Unit 4: Analog-to-Digital Converters (ADCs) | | |---|-----| | Specifications—Characteristics. Types of ADCs- Serial, parallel, direct and indirect ADCs. Hybrid and monolithic ADCs, Sigma-delta ADCs. Interfacing of ADCs to microprocessors and PCs Sample and Hold, Multiplexer and De-multiplexer, decoder and encoder, Pulse modulations, Digital recorder, Programmable Logic Controller | [6] | | Unit 5: Data Acquisition System Introduction, Analog and Digital Data Acquisition Systems, Block diagram, Components, Multiplexing, DeMultiplexing, Modulation, Display, Recording, Alarm, Programming, Voltage, Current, Frequency, Temperature, Displacement, Pressure measurement using Data Acquisition System (DAS) | [6] | | Unit 6: Applications and Benefits of Data Acquisition System Benefits of Data Acquisition System, Application of Data Acquisition System in Power plant, Process control plant and Automation, Data Logger. | [6] | #### Text Books - 1. User's Handbook of D/A and A/D Converters', E. R. Hnatek - 2. 'Electronic Analog/ Digital converters', H. Schmid - 3. 'Data Converters', G.B. Clayton #### Reference Books: - 1. Acquisition & Conversion Handbook, -Datel, Intersil - 2. Applications Reference Manual Analog Devices 1993 Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 21 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. – Kolhapur Advanced Control System | 24MMT1106B | PEC | Advanced Control System | 3-0-0 | 3 Credits | |------------|-----|-------------------------|-------|-----------| |------------|-----|-------------------------|-------|-----------| | Teaching Scheme | Examination Scheme | | |---------------------|-----------------------------|--| | Lecture: 3 hrs/week | CA -I :10 Marks | | | | CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Explain different state model of a system, and have theknowledge to find its solution. | |-----|--| | CO2 | Elaborate nonlinear system models, and analyze its stability. | | CO3 | Analyze the describing function analysis of various nonlinear systems. | | CO4 | Design different systems and analyze its stability using Lypurvstability analysis. | | CO5 | Analysis of controllability and observability of the dissimilar system. | | CO6 | Analize the various transforms | #### Course Contents: | Unit 1: Introduction | | |--|-----| | Concept of state space-state space representation of system, solution of time invariant state equation- state transition matrix. Linear time varying system. Discrete system state space representation and solution | [6] | | Unit 2: Non-linear system types of non-linearity, singular point, non-linear system stability analysis- phase plane technique, construction of phase trajectories, isocline method | [6] | | Unit 3: Describing function analysis Basic concepts, derivation of describing functions for common non-linearity's Describing function analysis of non-linear systems, Conditions for stability, Stability of oscillations. | [7] | | Unit 4: Lyapunov stability analysis Definition of stability, instability and asymptotic stability. Lyapunov stability theorems. Stability analysis of simple linear systems. | [6] | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 22 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 5: MIMO systems | | |--|-----| | Controllability-Observability-Effect of pole-zero cancellation, Practical examples-
controllable and uncontrollable systems-observable and unobservable systems. Optimal
control system-definition- design using state variable feedback and error squared
performance indices. | [7] | | Unit 6: Z-Transform and digital control system Z-transfer function-block diagram- signal flow graph- discrete root locus. | [6] | #### Text Books: - C. D. Johnson, Process Control Instrumentation Technology, 7th ed., Prentice Hall of India, New Delhi, 2003 - R K. Ogata "Discrete Time Control Systems", 1996, PHI. 3.R K. Ogata "Modern Control Engineering", 1996, PHI. #### Reference Books: - R. C. Dorf and R. H. Bishop, Modern Control Systems, 8th ed., Pearson Education, Delhi, 2004 - M. Gopal, "Modern Control System Theory", New Age International Publishers, 2nd edition, 1996 - 3. Madangopal "Digital control and state variables methods" 1997, PHI. - 4. Modern control engineering -Katsuhiko Ogata, Pearson Edition. Dept. of Mechatronics Engineering SIT COE, Yadrav Page 23 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. – Kolhapur Advanced Computer Programming | 24MMT1106C | PEC | Advanced Computer Programming | 3-0-0 | 3 Credits | |------------|-----|-------------------------------|-------|-----------| |------------|-----|-------------------------------|-------|-----------| | Teaching Scheme | Examination Scheme | | |---------------------|-----------------------------|--| | Lecture: 3 hrs/week | CA -I:10 Marks | | | | CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Develop, debug and execute programs which use reading, writing and manipulati | |-----|---| | CO2 | Develop, debug and execute programs to perform memory access using Rits | | CO3 | Develop, debug and execute modular programs by writing and using
Functions | | CO4 | Appreciate use of various header files and test and implement constant andMacro | | CO5 | Implement different data types under and Utilize memory effectively usingUnion | | CO6 | Develop, debug and execute programs to read and write data from secondarystorage device | #### Course Contents: | Unit 1: Array and array Operations | | |---|-----| | Insertion, Searching, Merging, Sorting, Deletion Introduction of String as array of characters Declaration and Initialization of String Two- Dimensional Array and its Operations: Insertion, Deletion, Matrix addition operation, Multi-Dimensional Arrays, sscanf() and sprintf() Functions Drawbacks of Linear Arrays | [6] | | Unit 2: Introduction and Features of Pointers Declaration of Pointer, Void Pointers Array of Pointers Pointers to Pointers | [7] | | Unit 3: Basics of Functions Built-in and user defined Functions, Using String, Math and other built-in functions Advantages of using Functions Working of a Function Declaring, Defining and calling user defined Functions- The return Statement Call by Value and call by Reference Function as an Argument Recursion | [6] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 24 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Advantages and Disadvantages of Recursion | | |---|-----| | Unit 4: Introduction #define and #undefDirectives #include, #line Directive Predefined macros in ANSIC Standard I/O Predefined Streams instdio.h Predefined macros inctype.h | [7] | | Unit 5: Introduction and Features of Structures Declaration and Initialization of Structures. Array of Structures Pointers to Structure Typedef Enumerated Data Type Union, Union of Structures | [6] | | Unit 6: Introduction File Operations Opening a File, Reading a File iii.Closing a File Text Modes, Binary Modes File Functions fprintf() fscanf() iii.getc() iv.putc() seek() | [6] | 1. Kamthane, A.N., Programming in 'C', Pearson, 2012 ####
Reference Books: - 1. Balaguruswami, E. Programming in ANSI C - 2. Kanetkar, Yashavant Let us 'C' BPBpublications, 2010 Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 25 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Digital Signal Processing and Machine Vision | | | | | | |--|-----|---|-------|-----------|--| | 24MMT1106D | PEC | Digital Signal Processing and Machine
Vision | 3-0-0 | 3 Credits | | | Teaching Scheme | Examination Scheme | | |---------------------|-------------------------------------|--| | Lectures: 3hrs/week | CA -I :10 Marks
CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Memorize the different types of signals and systems | |-----|---| | CO2 | Understand the significance of various digital filter structure | | CO3 | Apply the knowledge of multi-rate signal processing in the real time applications | | CO4 | Identify the segmentation and motion detection and estimation techniques | | CO5 | Illustrate image formation models and feature extraction for computer vision | | CO6 | Elaborate Data structures for Image Analysis | #### Course Contents: | Unit 1: Overview of DSP | | |---|-----| | Characterization in time and frequency, FFT Algorithms, Digital filter design and structures: | | | Basic FIR/IIR filter design &structures, design techniques of linearphase FIR filters, IIR | [6] | | filters by impulse invariance, bilinear transformation, FIR/IIR Cascaded lattice structures, | | | and parallel all pass realization of IIR | | Head Dept. of Mechatronics Engineering Page 26 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 2 Multi rate DSP | | |---|-----| | Decimators and Interpolators, Sampling rate conversion, multistage decimator & interpolator, poly phase filters, QMF, digital filter banks, Applications in sub band coding | [7] | | Unit 3 Linear prediction & optimum linear filters | | | stationary random process, forward- backward linear prediction filters, solution of normal equations, AR Lattice and ARMA Lattice-Ladder Filters, Wiener Filters for Filtering and Prediction. | [6] | | Unit 4 Adaptive Filters | | | Applications, Gradient Adaptive Lattice, Minimum mean square criterion, LMS algorithm, Recursive Least Square algorithm. Estimation of Spectra from Finite-Duration Observations of Signals. Nonparametric Methods for Power Spectrum Estimation, Parametric Methods for Power Spectrum Estimation, Minimum- Variance Spectral Estimation, Eigen analysis Algorithms for Spectrum Estimation | [6] | | Unit 5 Basic Concepts: Image functions | | | The Dirac distribution and convolution, The Fourier transform Images as a stochastic process, mages as linear systems, Image digitization, Sampling Quantization, Color images, Digital mage properties, Metric and topological properties of digital images, Histograms, Visual perception of the image, Image quality, Noise in images Data structures for Image Analysis: Levels of image data representation Traditional image Matrices, Chains, Topological data structures, Relational structures, Hierarchical data structures Pyramids, Quad trees. | [6] | | Unit 6 Data structures for Image Analysis Levels of image data representation Traditional image Matrices, Chains, Topological data structures, Relational structures, Hierarchical data structures Pyramids, Quad trees | [6] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 27 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - 1. Ifeachor Jervis, Digital Signal Processing, Pearson Education - 2. Gonzalez & Digital Image Processing, Pearson Publication. #### Reference Books: - John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing. Principles, algorithms, and applications, PHI, 1997. - 2. Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing Analysis and Machine Vision" Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 28 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Fluid Power system and Factory Automation Laboratory | 24MMT1107 | | Fluid Power system and Factory Automation
Laboratory | | 1 Credits | |-----------|--|---|--|-----------| |-----------|--|---|--|-----------| | Teaching Scheme: | Evaluation Scheme: | |-------------------------|------------------------------------| | Practical: 2 hours/week | CA -I :15 Marks | | | CA-II :15 Marks | | | End Semester Examination: 20 Marks | Pre-Requisites: Nil Course Outcomes: At the end of the course students will be able to - | COI | Design and implement fluid power systems | | |-----|--|--| | CO2 | Explain the operation and troubleshooting of the fluid power system components | | | CO3 | Design and implement PLC system | | #### List of Experiments: At least minimum 6 experiments should be performed from the following list. - 1. Design of basic hydraulic circuits - 2. Design of basic pneumatic circuits - 3. Design of advanced hydraulic circuits - 4. Design of advanced pneumatic circuits - 5. Design of electro-hydraulic circuits - 6. Design of electro-pneumatic circuits - 7. Ladder logic programming for Programmable Logic Controller (PLC) - 8. Control of fluid power systems using PLC - 9. 9. Operation and troubleshooting of fluid Power system OF MEON MEO Head Dept. of Mechatronics Engineering SIT COE, Yadray Page 29 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - Saha, S.K., "Introduction to Robotics, 2nd Edition, McGraw-Hill Higher Education, New Delhi, 2014. - Richard D, Klafter, Thomason A ChmielOwski, Michel Nagin "Robotics Engg-an Integrated Approach" PHI 2005. - 3. R.K. Mittal & I.J. Nagrath, "Robotics & Control" TMH-2007 - 4. "Hydraulics and Pneumatics", Shaikh and Khan, R.K. Publication. - 5. "Fluid Power with Application", Esposito, Pearson Education, 7th Edition. - 6. "Basic Hydraulic Festo Manual" - 7. "Basic Pneumatic Festo Manual" #### Reference Books: - 1. Deb.S.R., Robotics technology and flexible Automation, John Wiley, USA 1992. - 2. Asfahl C.R., Robots and manufacturing Automation, John Wiley, USA 1992. - Klafter R.D., Chimielewski T.A., Negin M., Robotic Engineering An integrated approach, Prentice Hall of India, New Delhi, 1994. - 4. Issac Asimov I Robot, Ballantine Books, New York, 1986 - "Hydraulic and Pneumatic", H.L. Stewart, Industrial Press. 7. "Industrial Hydraulic", J. J. Pipenger, Tata McGraw Hill. - "Power Hydraulics", Goodwin 1st Edition. 4. "Introduction to Hydraulic and Pneumatics", S. Ilango and V Soundararajan, Prentice Hall of India, 2nd Edition. Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 30 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Mechatronics System Design Laboratory | 24MMT1108 PCC | Mechatronics System Design Laboratory | 0-0-2 | 1 Credits | |---------------|---------------------------------------|-------|-----------| |---------------|---------------------------------------|-------|-----------| | Teaching Scheme: | Evaluation Scheme: | |-------------------------------|-----------------------------------| | Practical: 2 hours/week/batch | CA -I :15 Marks | | 1.0 | CA -II:15 Marks | | | End Semester Examination:20 Marks | Pre-Requisites: Basic knowledge of Semiconductor Physics and Basic Electronics. Course Outcomes: At the end of the course students will be able to - | COI | Calibrate the Instruments | |-----|---| | CO2 | Verify P+I, P+D, P+I+D control actions. | | CO3 | Analyze control system | #### List of Experiments: At least minimum 8 experiments should be performed from the following list. - Calibration of flow meters. - 2. Calibration of Thermocouples/ RTD. - 3. Study of Load Cells. - 4. Vibration measurement using accelerometers. - 5. Displacement measurement/ level measurement. - 6. Verification of P, P+I, P+D, P+I+D control actions. - 7. Study of XY position control systems. - 8. Study of linear conveyor control system. - 9. Study of rotary table positioning systems. - 10. Study of different switches and relays. - 11. Analysis of control system using software like MATLAB/SIMULINK or equivalent. - 12. Study of A/D and D/A converters. - 13. Study of Flip Flops and Timers. - 14. Study of Application of Op Amp circuits. - 15. Study of Data acquisition system. - Study of Microcontrollers. Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 31 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute)
Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - 1. A course in Electrical, Electronics measurement and Instrumentation, A.K.Sawhney - 2. Mechanical & Industrial measurements, Jain R.K., Khanna Publications, New Delhi. - 3. Mechanical measurements & instrumentation, Rajput.R.K., S.K.Kataria and sons, New Delhi. - 4. Electronic Instrumentation, H. S. Kalsi, MGH, 3rd Edition #### Reference Books: - 1. Electronic Instrumentation and Measurement Techniques, Welfrick Cooper. - 2.Instrumentation for Engineers And Scientists , John Turner ,II Edition , Wiley - 3. Electronic Instrumentation and Measurements, David A Bell, Third Edition, Oxford. - 4.Instrumentation for Engineering Measurements, James W Dally, II Edition , Wiley India Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 32 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | | | Effective Communication Skills | | | |-----------|-----|--------------------------------|-------|----------| | 24MMT1109 | AEC | Effective Communication Skills | 0-0-2 | 1Credits | | Teaching Scheme | Examination Scheme | | |-------------------|--------------------------------|--| | Lecture:2hrs/week | CA –I :25Marks
CA–II:25arks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO 1 | To demonstrate the ability to perform close and critical readings. | |------|--| | | To demonstrate the ability to distinguish opinions and beliefs from researched claims and evidence and recognize that kinds of evidence will vary from subject to subject. | | | To ask disciplinarily appropriate questions of the material and recognize when lines ofinquiry fall outside of disciplinary boundaries. | | | To demonstrate the ability to consider critically the motives and methods of scholarship and the relationship between them. | | CO 5 | To evaluate, credit, and synthesize sources | Under this student has to deliver on one of the advanced topics chosen in consultation with the guide after compiling the information from the latest literature and also internet. The concepts must be clearly understood and presented by the student. Prior to presentation, he/she shall carry out the detailed literature survey from Standard References such as International Journals and Periodicals, recently published reference Books etc. All modern methods of presentation should be used by the student. Ahard copy of the report (25 to 30 pages A4 size, 12 fonts, Times New Roman, single spacing both sides printed, preferably in IEEE format) should be submitted to the Department before delivering the seminar. A PDF copy of the report in soft form must be submitted to the guide along with other details ifany. Guide should guide concern student 2hrs /week/student for seminar. (Student is expected to submit seminar report in Latex/Microsoft word in the standard format style file available in the department Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 33 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Robot Dynamics and Control | | | | | |----------------------------|-----|----------------------------|-------|-----------| | 24MMT1201 | PCC | Robot Dynamics and Control | 3-0-0 | 3 Credits | | Teaching Scheme | Examination Scheme | | |---------------------|-------------------------------------|--| | Lecture: 3 hrs/week | CA –I :10 Marks
CA –II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Summarize fundamental and technical knowledge of Robotics, | |-----|---| | CO2 | Design computing of design criteria of robot elements | | CO3 | Apply knowledge of specifying the robot elements and selection of
Robots | | CO4 | Analyze robots through Kinematic and Dynamic study & Dynamic study | | CO5 | Discuss effective practices in uses of robots, robot economics and novel advancements in this area. | | CO6 | Elaborate the robot dynamics | | | | #### Course Contents: | [6] | |-----| | | | [6] | | [6] | | | Dept. of Mechatronics Engineering SIT COE, Yadray Page 34 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadray (Ichalkaranii)-416121, Dist. - Kolhapur | Unit 4: Dynamic Modelling | [6] | |---|-----| | Dynamic modeling Lagrangian Mechanics, Dynamic modeling of two degree of freedom
manipulator, Langrange-Euler Formulation, Newtion-Euler formulation, Comparison of
Langrange-Euler Formulation and Newtion Euler formulation, Inverse dynamics | | | Unit 5: Matrices Homogeneous transformations and Manipulator, Robot kinematics, Forward solution, Inverse solution, Control system concepts, Analysis, control of joints, Adaptive and optimal control, Trajectory Planning, | [7] | | Unit 6: -Robot Dynamics, Langragian formulation, D Alembert's principle, Robot programming Methods - Robot programming languages - VAL Language, Computer controller and Robot communication, Economics of Robots, Telechiricrobots | [6] | #### Text Books: - John J. Craig, Introduction to Robotics Mechanics and Control, Second Edition, Addison Wesly Longman Inc. International Student edition, 1999. - R. K. Mittal and I J Nagrath, Robotics and Control, McGraw Hill Education (India) Private Limited, 2017. #### Reference Books: 1. R. N Nazar, Theory of Applied Robotics: Kinematics, Dynamics, and Control, Springer; 2nd Ed. 2010. Head Dept. of Machatronics Engineering SIT COE, Yadrav Page 35 of 57 ## Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Advanced Microcontrollers and Embedded System | | | | | |---|-----|--|-------|-----------| | 24MMT1202 | PCC | Advanced Microcontrollers and
Embedded System | 3-0-0 | 3 Credits | | Teaching Scheme | Examination Scheme | | |---------------------|-----------------------------|--| | Lecture: 3 hrs/week | CA -I :10 Marks | | | | CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | #### Pre-Requisites: Course Outcomes: At the end of the course, students will be able to: | COI | Illustrate the basics of an embedded system | |-----|---| | CO2 | Illustrate Program in embedded system | | CO3 | Design, implement and test an embedded system | | CO4 | Discuss different peripheral interfaces to embedded systems | | CO5 | Apply knowledge gained in software-hardware integration in team-based projects. | | CO6 | Apply various tools in Embedded system | #### Course Contents: | Unit 1: Introduction to Embedded Systems Embedded Systems, Processor Embedded into a System, Embedded Hardware Units and Devices in a System, Embedded Software, Complex System Design, Design Process in Embedded System, Formalization of System Design, Classification of Embedded Systems. | [6] | |---|-----| | Unit 2:8051 and Advanced Processor Architecture 8051 Architecture, 8051 Micro controller Hardware, Input/output Ports and Circuits, External Memory, Counter and Timers, Serial data Input/output, Interrupts, Introduction to Advanced Architectures, Real World Interfacing, Processor and Memory organization — Devices and Communication Buses for Devices Network: Serial and parallel Devices & ports, Wireless Devices, Timer and Counting Devices, Watchdog Timer, Real Time Clock, Networked Embedded Systems, Internet Enabled Systems, Wireless and Mobile System protocols | | | Unit 3: Embedded Programming Concepts Software programming in Assembly language and High-Level Language, Data types, Structures, Modifiers, Loops and Pointers, Macros and Functions, object-oriented Programming, Embedded Programming in C++ & JAVA | | Head Dept. of Mechatronics Engineering SIT COE, Yadray Page 36 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Yadrav (Ichaikaranji)-416121, Dist. – Koinapur | | |---|-----| | Unit 4: Real – Time Operating Systems OS Services, Process and Memory Management, Real – Time Operating Systems, Basic Design Using an RTOS, Task Scheduling Models, Interrupt Latency, Response of Task as Performance Metrics – RTOS Programming: Basic functions and Types of RTOSES, RTOS VxWorks, Windows CE | [6] | | Unit 5
Embedded Software Development Process Introduction to Embedded Software Development Process and Tools, Host and Target Machines, Linking and Locating Software, Getting Embedded Software into the Target System, Issues in Hardware-Software | [7] | | Unit 6: Embedded Software Tools Design and Co-Design – Testing, Simulation and Debugging Techniques and Tools: Testing on Host Machine, Simulators, Laboratory Tools | [6] | | 1. Embedded Systems, Raj Kamal, Second Edition TMH. 2. Introduction to Embedded Systems, Shibu K.V, TMH | | ### Reference Books: - 1. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream TechpressThe 8051 - 2. Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Pearson. - 3. The 8051 Microcontroller, Third Edition, Kenneth J Ayala, Thomson. - 4. An Embedded Software Primer, David E. Simon, Pearson Education. - 5. Micro Controllers, Ajay V Deshmukhi, TMH. - 6. Microcontrollers, Raj kamal, Pearson Education Head Dept. of Mechaironics Engineering SIT COE, Yadrav Page 37 of 57 # Sharad Institute of Technology College of Engineering ### (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Industrial Automation | PCC | Industrial Automation | 3-0-0 | 3Credits | |-----|-----------------------|---------------------------|---------------------------------| | • | PCC | PCC Industrial Automation | PCC Industrial Automation 3-0-0 | | Teaching Scheme | Examination Scheme | | |-------------------|--|--| | Lecture:3hrs/week | CA -I:10Marks
CA-II:10Marks
Mid Semester Exam: 30 Marks
End Semester Exam:50Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | Understand the effect of manufacturing automation strategies and derive production | |--| | To know various automation tools and methods in manufacturing industry | | Analyze automated flow lines and assembly systems, and balance the line | | Design automated material handling and storage systems for a typical production | | Design a manufacturing cell | | Develop CAPP systems for rotational and prismatic parts. | | | ### Course Contents: ### Unit 1: Manufacturing Automation Automated Manufacturing Systems, Computerized Manufacturing Support Systems, Reasons for Automation, Automation Strategies-The USA Principle, Ten Strategies for Automation and Process Improvement, Automation Migration Strategy. [6] Dept. of Mechanonics Engineering SIT COE, Yadrav Page 38 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 2: Automated Flow lines System Configurations, Work part Transfer Mechanisms, Storage Buffers, Control of Production Line, Analysis of Transfer Lines-Transfer Lines with No Internal Parts Storage, Transfer Lines with Internal Storage Buffers. | [6] | |---|-----| | Unit 3: Assembly Workstations Work Transport Systems, Line Pacing, Coping with Product Variety, Analysis of Single Model Assembly Lines-Repositioning Losses, The Line Balancing Problem, Line Balancing Algorithms-Largest Candidate Rule, Kilbridge and Wester Method, Ranked Positional Weights Method. | [8] | | Unit 4: Automated Assembly Systems System Configurations, Parts Delivery at Workstations, Applications, Quantitative Analysis of Assembly Systems- Parts Delivery System at Workstations, Multi-station Assembly machines, Single Station Assembly Machines, Partial Automation | [6] | | Unit 5: Automatic Material Handling and Storage systems Design Considerations in Material Handling, Material Transport Equipment-Industrial Trucks, Automated Guided Vehicles, Monorails and Other Rail-Guided Vehicles, Conveyors, Cranes and Hoists, Analysis of Vehicle Based Systems, Conveyor Analysis. Automated Storage/Retrieval Systems, Carousel Storage Systems, Engineering Analysis of AS/RS and Carousel Systems control | [6] | | Unit 6: Computer Integrated Manufacturing The Scope of CAD/CAM and CIM, Computerized elements of a CIM System, Components of CIM, Database for CIM, Planning, Scheduling and Analysis of CIM Systems. | [6] | - W. Bolton, Mechatronics-Electronic Control systems in Mechanical and Electrical Engineering-,2ndEdition, Addison Wesley LongmanLtd.,1999. - Mikell P Groover, Automation, production Systems and Computer Integrated manufacturing, 3 rd Edition, Prentice Hall Inc., New Delhi, 2007. ### Reference Books: - Nanua Singh, System Approach to Computer Integrated Manufacturing, Wiley & Sons Inc., 1996 - Brian Morris, Automated Manufacturing Systems-Actuators, Controls, Sensors and Robotics, McGraw Hill International Edition, 1995 Dept. of Mechatronics Engineering SIT COE, Yadrav Page 39 of 57 # Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | | Experi | mental Design, Data Analysis and Quali | ty Control | | |-----------|--------|---|------------|-----------| | 24MMT1204 | ESC | Experimental Design, Data Analysis
and Quality Control | 3-0-0 | 3 Credits | | Teaching Scheme | Examination Scheme | | |---------------------|--|--| | Lecture: 2 hrs/week | CA –I :10 Marks
A –II :10 Marks
Mid Semester Exam: 30 Marks
End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Design formulate and solve Sampling Distributions | | |-----|--|--| | CO2 | Develop and formulate and solve Sampling Distributions | | | CO3 | Demonstrate One - and Two - Sample tests | | | CO4 | Formulate statistical hypothesis, tests | | | CO5 | Design ANOVA | | | CO6 | Formulate Statistical Quality Control | | Head to Mechauonics Engineering Dept. of Mechatronics Engineering SIT COE, Yadrav Page 40 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Course Contents: | Unit 1: Probability Theory and Sampling Distributions Basic probability, Theory along with examples. | [3] | |--|-----| | Unit 2: Standard discrete and continuous distributions Binomial, Poisson, Normal, Exponential etc. Central Limit Theorem and its significance. Some sampling distributions like, t, F | [5] | | Unit 3: One - and Two - Sample estimation problems Introduction, statistical inference, classical methods of estimation, single sample: estimating the mean and variance, two samples: estimating the difference between two means and ratio of two variances. | [4] | | Unit 4: One - and Two - Sample tests of hypotheses Introduction, testing a statistical hypothesis, tests on single sample and two samples concerning means and variances. | [5] | | Unit 5: ANOVA One – way, Two – way with/without interactions, Latin Squares ANOVA technique, Principles of Design of Experiments, some standard designs such as CRD, RBD, LSD. | [4] | | Unit 6: Statistical Quality Control Introduction, nature of control limits, purpose of control charts, control charts for variables, control charts for attributes. | [3] | | | | #### Text Books: - Douglas C. Montgomery, Design and Analysis of Experiments (7 th Edition), Wiley Student Edition, 2009. - S. P. Gupta, Statistical Methods, S. Chand & Samp; Sons, 37 th revised edition, 2008 #### Reference Books: - William W. Hines, Douglas C. Montgomery, David M. Goldsman, Probability and Statistics for Engineering, (4 th Edition), Willey Student edition, 2006. - Ronald E, Walpole, Sharon L. Myers, Keying Ye, Probability and Statistics for Engineers and Scientists (8 th Edition), Pearson Prentice Hall, 2007 Dept. of Mechatronics Engineering SIT COE, Yadrav Page 41 of 57 # Sharad Institute of Technology College of Engineering ### (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | | Ele | ctive - II: Product Design and Develop | ment | | |------------|-----|--|-------|-------| | 24MMT1205A | PEC | Product Design and Development | 3-0-0 | Audit | | Teaching Scheme | Examination Scheme | | |--------------------|------------------------------------|--| | Lecture:3 hrs/week | CA-I :25 Marks
CA –II :25 Marks | | Pre-Requisites: Nil ### Course Outcomes: At the end of the course, the student will be able to: | COI | Describe the characteristics used for product design and development. | |-----|---| | CO2 | Assess the customer requirements in product design. | | CO3 | Apply structural approach to concept generation, selection and testing. | | CO4 | Identify various aspects of design such as industrial design, | | CO5 | Design for manufacture, assembly, service and quality and product architecture. | | CO6 | Explain various principles and technologies used for the preparation of prototype | #### Course Contents: | Unit 1: Introduction Characteristics of successful product development, design and development of products, duration, and cost of product
development, the challenges of product development. Development Processes and Organizations: Generic development process, concept development; the frontend process, adopting the generic product development process, the AMF development process, product development organizations, the AMF organization. | [5] | |--|-----| | Unit 2: Product planning Product planning process, identify opportunities, evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process Identifying customer needs: Gather raw data from customers, interpret raw data in terms of customer needs, organize the needs into a hierarchy, establish the relative importance of the needs and reflect on the results and the process. | [4] | | Unit 3: Concept Generation, Selection and testing Activities of concept generation, need for systems level thinking, TRIZ and its comparison with brainstorming and lateral thinking, TRIZ tools Ideality and IFR, problem | [3] | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 42 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadray (Ichalkaranji)-416121, Dist. - Kolhapur | formulation and functional analysis, use of 40 principles to solve contradiction, use of S- curves and technology evolution trends. Concept selection: Overview of methodology, concept screening, and concept scoring, Pugh matrix and its application. Concept testing: Define the purpose of concept test, choose a survey population, choose a survey format, communicate the concept, measure customer response, interpret the result, reflect on the results and the process, Failure Mode Effect Analysis (DFMEA and PFMEA). | | |---|-----| | Unit 4: Product architecture: Implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues. Industrial design: Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, assessing the quality of industrial design. Design for X (DFX) | [4] | | Unit 5: Design for manufacturing Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors, design for assembly, service and quality. | [4] | | Unit 6: Prototyping Prototyping basics, principles of prototyping, technologies, planning for prototypes Product development economics: Elements of economic analysis, base case financial mode, sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. | [4] | ### Text Books: - Ramamrutham S.: Strength of Materials, Dhanpat Rai & Sons, 1991. - V.B. Bhandari, "Design of Machine Elements", Tata McGraw Hill Publishing CompanyLtd.,2ndEdition,2007 - Beer and Johnston: Strength of Materials-CSB Publisher. ### Reference Books: - Rao, J. S.& Dukkipati, R.V.: Mechanism & Machine Theory, New Age International Pvt. Ltd. Publishers. - Ramamurthy, V.: Mechanics of Machines, Narosa Publishing House. - Manufacturing Technology, P.N.Rao, Tata McGraw-Hill Publishing Limited ,II Edition, 2002. - S.S. Rattan, "Theory of Machines", TataMcGrawHillPublishingCompanyLtd.,2nd Edition, 2007 Dept. of Mechatronics Engineering SIT COE, Yadray Page 43 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Elective – II: Computer Integrated Manufacturing | | | | | |--|-----|-----------------------------------|-------|-------| | 24MMT1205B | PEC | Computer Integrated Manufacturing | 3-0-0 | Audit | | Teaching Scheme | Examination Scheme | | |---------------------|-------------------------------------|--| | Lecture: 2 hrs/week | CA –I :25 Marks
CA –II :25 Marks | | Pre-Requisites: C Programming Course Outcomes: At the end of the course, students will be able to: | CO1 | Develop an understanding of computer-integrated manufacturing (CIM) and its impact on productivity, product cost, and quality. | |-----|--| | CO2 | Obtain an overview of computer technologies including computers, database and data collection, networks, machine control, etc. | | CO3 | Apply to factory management and factory floor operations | | CO4 | Describe the integration of manufacturing activities into a complete system | | CO5 | Describe of the basic areas of artificial intelligence including problem solving, knowledge representation, reasoning, decision making, planning, perception and action, and learning and their applications | | CO6 | Discuss Computer aided process planning systems | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 44 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur ### **Course Contents:** | Unit 1: Introduction to Manufacturing systems CIM Technology, CIM models, FMS Concepts Definition of FMS – types of FMS, types of flexibility and performance measures, Different FMS layouts, advantages, disadvantages, components of FMS, manufacturing cell. Group technology-classification and coding, production flow analysis, machine cell design simple examples in design, machining centers and turning centers, handling systems, loading and unloading-fixtures and pallets, head indexers | [5] | |---|-----| | Unit 2: Distributed numerical control DNC system – communication between DNC computer and machine control unit – hierarchical processing of data in DNC system – features of DNC system. Adaptive control in Machine control unit. Networking concepts, LOSI, MAP, TOP, LAN, WAN, Communication interface, bus architecture, topologies, and protocols. Manufacturing data base. | [3] | | Unit 3: Automated material handling Function, types, analysis of material handling equipment. Design of AGV systems. Automated storage: Storage system performance, AS/RS, carousel storage system, WIP storage, Analysis of AS/RS, Industrial robots. Tool Management system-tool strategies- tool identification technologies and tool monitoring, Inspection stations | [4] | | Unit 4: Development and implementation of FMS Planning phases, scheduling, integration, system configuration, simulation, FMS project development steps. Hardware and software development. Installation and implementation. Application and benefits of FMS, Quantitative analysis of FMS. Typical Case studies | [4] | | Unit 5: Introduction to AI History, Definition of AI, Emulation of human cognitive process, knowledge search tradeoff, stored knowledge, semantic nets. An abstract view of modeling, elementary knowledge. Computational logic, analysis of compound statements using simple logic connectives, predicate logic, knowledge organization and manipulation, knowledge acquisition. Concepts of fifth generation computing, programming in AI environment, develops artificial intelligence system, natural language processing, neural networks | [4] | | Unit 6: -Computer aided process planning systems Logical design of a process planning - implementation considerations - manufacturing system components, production volume, Number of production families, Process Planning software -CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and PRO, CPPP | [4] | Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 45 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - 1. Parrish D. J, "Flexible manufacturing", Butterworth Heinemann Ltd, 1990 - 2. Groover M. P, "Automation, production systems and computer integrated manufacturing" - Shivanand H. K., Benal M. M and Koti V, "Flexible manufacturing system", New Age International (P) Limited. Publishers, 2006 #### Reference Books: - 1. Kusiak A., "Intelligent manufacturing systems", Prentice Hall, Englewood Cliffs, NJ, 1990 - Considine D. M. & Considine G. D, "Standard handbook of industrial automation", Chapman and Hall, London, 1986 - 3. Ranky P. G, "The design and operation of FMS", IFS Pub, U. K, 1998 - Joseph Talavage&Hannam, "Flexible Manufacturing Systems in Practice", Marcel Dekker Inc. - 5. Kant Vajpayee, "Principles of
Computer Integrated Manufacturing", Prentice Hall of India Head Dept. of Mechatronics Engineering SIT COE, Yadray Page 46 of 57 # Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Elective - II: Micro Electro-Mechanical Systems | 24MMT1205C | PEC | Micro Electro-Mechanical Systems | 3-0-0 | Audit | |------------|-----|----------------------------------|-------|-------| |------------|-----|----------------------------------|-------|-------| | Teaching Scheme: | Examination Scheme: | | |-----------------------|-----------------------------|--| | Lecture: -3 hrs./week | CA -I:10 Marks | | | | CA -II :10 Marks | | | | Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Classify and compare MEMS for various applications | | | |-----|---|--|--| | CO2 | Summarize various materials used for MEMS and microsystems | | | | CO3 | Explain the working principle of MEMS and microsystems | | | | CO4 | Interpret various processing techniques for fabrication of MEMS | | | | CO5 | Demonstrate the working principles of transducers | | | | CO6 | Illustrate the importance of MEMS packaging and reliability | | | #### Course Contents: | Unit 1: Introduction to MEMS History of MEMS development, Scaling of micromechanical devices, intrinsic characteristics of MEMS, Applications of MEMS in various industries, multidisciplinary nature of microsystem design and manufacture, Microsystems and microelectronics | [6] | |---|-----| | Unit 2: Materials for MEMS and microsystems: Silicon compatible material systems, Piezoelectric crystals, Polymers, Shape memory alloys, Packaging materials, Important material properties and physical effects | [7] | | Unit 3: Microsystems and their working principles: Microsensors, Micro actuation, MEMS with micro actuators, Microfluidies | [8] | | Unit 4: Microfabrication: Photolithography, Physical vapor deposition, Chemical vapor deposition, Bulk micromanufacturing, Surface micromachining, LIGA process | [6] | | Unit 5: Transducers: Electrostatic sensing and actuation, Thermal sensing and actuation, Piezoresistive sensors, | [6] | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 47 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Piezoelectric sensing and actuation, Magnetic actuation | | |--|-----| | Unit 6: MEMS packaging and reliability: | | | Key design and packaging considerations, Types of packaging solutions, Quality control | [6] | | and reliability | | #### Text Books - Tai-Ran Hsu, "MEMS and microsystems-Design and Manufacture," 1 st edition, Tata McGraw-Hill, 2002 - Nadim Maluf, Kirt Williams, "An Introduction to Microelectromechanical Systems Engineering," 2 nd edition, Artech House Inc. 2004 - 3. Chang Liu, "Foundations of MEMS," 2 nd edition, Pearson Education Inc., 2012 #### Reference Books: - 1. The MEMS Handbook Introduction and Fundamentals, 2 nd edition, CRC Press, 2006 - 2. The MEMS Handbook Design and Fabrication, 2 nd edition, CRC Press, 2006 - Thomas M. Adams, Richard A, Layton, Introductory MEMS Fabrication and Applications, Springer, 2010 Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 48 of 57 # Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur ### Autotronics & Vehicle Intelligence | 24MMT1205D | PEC | Autotronics & Vehicle Intelligence | 3-0-0 | 3 Credits | |------------|-------|--|-------|-----------| | | 00000 | A THIRD AND AND AND AND AND AND AND AND AND AN | | o credits | | Teaching Scheme | Examination Scheme | | |---------------------|--|--| | Lecture: 3 hrs/week | CA -I:10 Marks | | | | CA –II:10 Marks
Mid Semester Exam: 30 Marks | | | | End Semester Exam: 50 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO1 | Analyze and use various SI and CI Management systems | |-----|---| | CO2 | Discuss Comprehensive fundamental and technical knowledge of sensors and transducers used in auto vehicles and vehicle intelligence | | CO3 | Explain different Engine Management Systems | | CO4 | Designing a suitable controller for energy management in electric and hybrid vehicles | | CO5 | Acquire Knowledge on several vehicle safety systems | | CO6 | Acquire Knowledge on several intelligent vehicle system and safety systems | ### Course Contents: | Unit 1: Automotive Fundamentals & Fuel Supply System | | |--|-----| | Engine Components – Drive train – suspension system, ABS, Steering System, Fuel Injection system - components, electronic fuel injection –Throttle body versus Port Injection - MPFI- CRDI. Fuel Ignition System – Electronic ignition system – operation – | [6] | | types - Battery, magneto ignition systems - Electronic spark timing control | | | Unit 2: Automotive Sensors | | | Knock sensors, oxygen sensors, crankshaft angular position sensor, temperature sensor, speed sensor, Pressure sensor, Mass air flow sensor, Manifold Absolute Pressure Sensors, crash sensor, Coolant level sensors, Brake fluid level sensors – operation, types, | [6] | | characteristics, advantage and their applications | | | Unit 3: Engine Management system On-board diagnostics, Exhaust emission control, Catalytic Converters, New Developments in engine management, adaptive Cruise control | [7] | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 49 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur | Unit 4: Control of Electric and hybrid vehicles Electric Vehicle - batteries electric motor and controller, regenerative braking – Control of hybrid vehicles – CNG electric hybrid vehicle – Hybrid Vehicle case studies | [6] | |---|-----| | Unit 5: Automotive Safety Sensor applications Automatic Rain sensing/wiper activation system, drowsy-driver sensing system, Active Safety Sensor systems, Passive Sensor Safety system - Side Impact Sensing, front impact sensing system | [7] | | Unit 6: Intelligent Vehicle System MEMS and Microsystems. Vision based autonomous road vehicles, Object detection, Collision warning and avoidance system – Tyre pressure warning system, security systems, Emergency Electronic braking. Intelligent Vehicle Systems – Unmanned ground vehicles, Vehicle Platooning. | [6] | #### Text Books: - C. D. Johnson, Process Control Instrumentation Technology, 7th ed., Prentice Hall of India, New Delhi, 2003 - William B.Ribben, Understanding Automotive Electronic: An Engineering Perspective (2012), Elsevier Science #### Reference Books: - Tom Denton, Automobile Electrical and Electronic systems (2013), Roulet edge, Taylor & Francis Group. - Gianfranco Pistoia, Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure Dept. of Mechatronics Engineering SIT COE, Yadrav Page 50 of 57 # Sharad Institute of Technology College of Engineering ## (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur ### Industrial Management | 24MMT1206 | HSSM | Industrial Management | 1-0-0 | Audit | | |-----------|------|-----------------------|-------|-------|--| |-----------|------|-----------------------|-------|-------|--| | Teaching Scheme | Examination Scheme | | |---------------------|------------------------------------|--| | Lecture: 1 hrs/week | CA-I :25 Marks
CA -II :25 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | COI | Recognize and appreciate the concept of Management, creating and enhancing a firm's | |-----|---| | CO2 | Relate the interdependence of the operations function with the other key functional areas of a firm | | CO3 | Explain Quality Assurance | | CO4 | Acquire Maintenance Function | | CO5 | Explain Management Information System: | | | | ### Course Contents: | Unit 1: Classification and Importance of Operations Management Operations Management in corporate profitability & competitiveness; Operations strategy; | [6] | |--|-----| | Types & characteristics of manufacturing systems & service system Unit 2: Operations Planning and Control: | | | Forecasting for operations; Inventory planning & control; Materials requirement planning; planning production in aggregate terms; Operations scheduling | [7] | | Unit 3: Quality Assurance The quality assurance system; choice
of process and reliability; control of quality | [6] | | Unit 4: Maintenance Function Preventive maintenance, Overhaul and replacement | [7] | | Unit 5: Management Information System Need & structure of MIS; Data Processing Systems; Data Sources & Management | [6] | Dept. of Mechatronics Engineering SIT COE, Yadrav Page 51 of 57 ## Sharad Institute of Technology College of Engineering ### (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur ### Unit 6: Management Information System: Concept and evolution, Manpower planning, recruitment and selection, Motivating personnel, Leadership [6] #### Text Books: - 1. Principles and Practice of Management by L.M. Prasad. - Introduction to Management by Plankett, W.R. and Attner, R.F., Kent Publishing Company #### Reference Books: - 1. Management Information Systems, Lauden and Lauden, PHI (1999). - 2. Management Information Systems by Jerome kante - 3. Management Information Systems by Davis Gordon Dept. of Mechatronics Engineering SIT COE, Yadrav Page 52 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Advanced Microcontrollers and Embedded System Laboratory | 24MMT1207 PG | Advanced Microcontrollers and Embedded System
Laboratory | 0-0-2 | 1 Credits | |--------------|---|-------|-----------| |--------------|---|-------|-----------| | Teaching Scheme: | Evaluation Scheme: | | |-------------------------|--------------------|--| | Practical: 2 hours/week | CA -I :25 Marks | | | | CA-II :25 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course students will be able to - | Program 8051 microcontroller to meet the requirements of the user. | |--| | Interface peripherals like switches, LEDs, stepper motor, Traffic lights controller, etc | | Handle interrupts | | Design a microcontroller development board to meet the requirements of the user | | | ### List of Experiments: At least minimum 6 experiments should be performed from the following list. - 1. Program for addition of BCD numbers. - 2. Interface an LED array and 7-segmentdisplay - 3. Interfacing of PIC18 with LCD - 4. Interfacing of PIC18 with Keyboard Interfacing - 5. Interfacing of PIC18 with temperature Sensor - 6. Interfacing of PIC18 with DS1306RTC - 7. Interfacing of PIC18 with DC Motor Control - 8. Interfacing of PIC18 with Stepper Motor #### Text Books: - Embedded Systems, Raj Kamal, Second Edition TMH. - Introduction to Embedded Systems, Shibu K.V, TMH #### Reference Books: - 1. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream TechpressThe 8051 - 2. Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Pearson. TO STATE OF THE PROPERTY TH Dept. of Mechatronics Engineering SIT COE, Yadray Page 53 of 57 # Sharad Institute of Technology College of Engineering ### (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Power Electronics and Drives Laboratory | 24MMT1208 | VSEC | Power Electronics and Drives Laboratory | 0-0-2 | 1 Credits | |-----------|------|---|-------|-----------| |-----------|------|---|-------|-----------| | Teaching Scheme: | Evaluation Scheme: | | |-------------------------------|-----------------------------------|--| | Practical: 2 hours/week/batch | CA -I :15 Marks | | | | CA -II:15 Marks | | | | End Semester Examination:20 Marks | | Pre-Requisites: Basic knowledge of Semiconductor Physics and Basic Electronics. Course Outcomes: At the end of the course students will be able to - | CO1 | Correlate theoretical and practical analysis of AC-AC, DC-AC converters | |-----|---| | CO2 | Analyze the characteristics of MOSFET, IGBT, SCR and SCR firing CKTs, these commutation techniques. | | CO3 | To perform the experiments on various converters | #### List of Experiments: At least minimum 8 experiments should be performed from the following list. - 1. Gate Pulse Generation using R, RC and UJT. - 2. Characteristics of SCR and Triac - 3. Characteristics of MOSFET and IGBT - 4. AC to DC half-controlled converter - 5. AC to DC fully controlled Converter - 6. Step down and step up MOSFET based choppers - 7. IGBT IGBT based three phase PWM inverter - 8. AC Voltage controllerbased single phase PWM inverter - 9. Switched mode power converter. Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 54 of 57 ## Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Text Books: - Power Electronics: Converters, Applications, and Design Ned Mohan, Tore M. Undeland, William P. Robbins, Wiley, ISBN: 978-0471226932. - Modern Power Electronics and AC Drives Bimal K. Bose, Prentice Hall, ISBN: 978-0130167439. - Power Electronics: Devices, Circuits, and Applications Muhammad H. Rashid, Pearson, ISBN: 978-0133125900. - Electric Motor Drives: Modeling, Analysis, and Control R. Krishnan, Prentice Hall, ISBN: 978-0130910141. #### Reference Books: - Electric Drives: Concepts and Applications Vedam Subrahmanyam, McGraw-Hill Education, ISBN: 978-0074603707. - Control in Power Electronics: Selected Problems Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg, Academic Press, ISBN: 978-0124027725. - Introduction to Modern Power Electronics Andrzej M. Trzynadlowski, Wiley, ISBN: 978-0470401033. - Power Electronics and Motor Drives: Advances and Trends Bimal K. Bose (Editor), Academic Press, ISBN: 978-0120884056. Dept. of Mechatronics Engineering SIT COE, Yadrav Page 55 of 57 ## Sharad Institute of Technology College of Engineering ### (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur #### Presentation skills | 24MMT1209 AEC | Presentation skills | 0-0-2 | 1Credits | |---------------|---------------------|-------|----------| |---------------|---------------------|-------|----------| | Teaching Scheme | Examination Scheme | | |-------------------|-----------------------------------|--| | Lecture:2hrs/week | CA -I :25Marks | | | | CA-II:25arks | | | | End Semester Examination:20 Marks | | Pre-Requisites: Nil Course Outcomes: At the end of the course, students will be able to: | CO 1 | Develop confidence and clarity in public speaking. | | |------|---|--| | CO 2 | Design the structure and organization of presentations. | | | CO3 | Learn to engage and persuade an audience. | | | CO 4 | Improve visual communication with effective use of slides and other aids. | | | CO 5 | Evaluate, credit, and synthesize sources | | This course on Presentation Skills is designed to equip participants with the essential tools for delivering effective and impactful presentations. It covers key areas such as understanding audience needs, structuring presentations, and designing visually appealing slides. Participants will learn verbal and non-verbal communication techniques to engage and persuade their audience, manage stage fright, and handle Q&A sessions confidently. The course includes practical exercises, peer feedback, and final presentations to ensure handson learning and skill development. By the end, participants will be able to create and deliver professional presentations with clarity and confidence. Under this student has to deliver on one of the advanced topics chosen in consultation with the guide after compiling the information from the latest literature and also internet. The concepts must be clearly understood and presented by the student. Head Dept. of Mechatronics Engineering SIT COE, Yadrav Page 56 of 57 # Sharad Institute of Technology College of Engineering (An Autonomous Institute) Yadrav (Ichalkaranji)-416121, Dist. - Kolhapur Prior to presentation, he/she shall carry out the detailed literature survey from Standard References such as International Journals and Periodicals, recently published reference Books etc. All modern methods of presentation should be used by the student. A hard copy of the report (25 to 30 pages A4 size, 12 fonts, Times New Roman, single spacing both sides printed, preferably in IEEE format) should be submitted to the Department before delivering the seminar. A PDF copy of the report in soft form must be submitted to the guide along with other details ifany. Guide should guide concern student 2hrs /week/student for seminar. (Student is expected to submit seminar report in Latex/Microsoft word in the standard format style file available in the department Dept. of Mechatronics Engineering SIT COE, Yadrav